JsonTV: Дмитрий Каштанов, ICL Services: Как собрать полезное ML-решение, если данные несовершенны HD

JsonTV: Дмитрий Каштанов, ICL Services: Как собрать полезное ML-решение, если данные несовершенны
00:08:45
Обнаружено блокирование рекламы на сайте

Для существования нашего сайта необходим показ рекламы. Просим отнестись с пониманием и добавить сайт в список исключений вашей программы для блокировки рекламы (AdBlock и другие).

JSON.TV 1051 ролик

JSON.TV – телеканал про ИКТ (информацию, коммуникации, технологии) и Digital Media.

Дмитрий Каштанов, ICL Services: Как собрать полезное ML-решение, если данные несовершенны.

Выступление Дмитрия Каштанова, Заместителя исполнительного директора по цифровой трансформации ICL Services, на конференции CNews «Искусственный интеллект 2019» 21 февраляПример процесса, который был роботизирован ICL Services с помощью ИИ (Machine learning): маршрутизация обращений 1-й линии Service Desk (6000+ заявок/месяц, 510+ категорий заявок). Результат на текущий момент: 15% заявок назначается на 2-ю линию за 22 сек с момента создания обращения. Эффект: снижение трудозатрат на 7%, +3 пункта SLA. Как собирается полезное решение: «копание» данных; исправление данных; улучшение модели; «придушивание» модели с сокращением остаточного отрицательного эффекта; «забываем» про модель (осваиваем потенциал другими инструментами).
RSS
Нет комментариев. Ваш будет первым!